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a b s t r a c t

Let T be a tree with n vertices, and Dn be the distance matrix of T . Graham and
Pollak (1971) discovered an elegant formula for the determinant of Dn: det(Dn) =

−(n − 1)(−2)n−2. It is surprising that it depends only on the order of T , not on the
specific structure of T . By virtue of the classical Dodgson’s determinant-evaluation rule,
Yan and Yeh (2006) presented a simple proof of the formula above. In this note, we give
another simple proof, based on a homogeneous linear three-term recurrence relation:
det(Dn) + 4 det(Dn−1) + 4 det(Dn−2) = 0.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Let T be a tree with n vertices whose vertices are denoted by 1, 2, . . . , n. Let Dn = (dij)n×n be the distance matrix of
T , where dij represents the distance from i to j in T .

A remarkable formula for the determinant of Dn was found by Graham and Pollak [7] in 1971:

det(Dn) = −(n − 1)(−2)n−2,

which depends only on the order n of T , independent of the structure of T . More than thirty years later, Yan and Yeh [9]
simplified the proof, by exploiting the classical Dodgson’s determinant-evaluation rule. More related extensions can be
found in [1–6,8,10,11].

It is worth mentioning that a nonhomogeneous linear two-term recurrence relation was deduced in [7,9]:

det(Dn) = −2 det(Dn−1) + (−1)n−12n−2.

And the remarkable Dodgson’s determinant-evaluation rule actually leads to a quadratic three-term recurrence rela-
tion [9]:

det(Dn) det(Dn−2) = (det(Dn−1))2 − 22n−6.

In this note, based on a simpler homogeneous linear three-term recurrence relation:

det(Dn) + 4 det(Dn−1) + 4 det(Dn−2) = 0,

together with the initial conditions det(D1) = 0 and det(D2) = −1, we could give another simple proof for det(Dn) =

−(n − 1)(−2)n−2.
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2. Proofs

There is an obvious observation: If n ≥ 3, then there exists a leaf (vertex of degree 1) in T such that its neighbor node
is of degree 2 or adjacent to another leaf. For example, assume that v is a terminal vertex of a diametrical path of T , then
v is a leaf in T , whose neighbor node is of degree 2 or adjacent to another leaf.
Case 1. There exists a leaf in T whose neighbor node is adjacent to another leaf.

Assume that the vertices (n−1) and n are two leaves of T sharing the common neighbor (the vertex (n−2)). Accordingly,
Dn is of the form:

Dn =

⎡⎢⎣ Dn−3 α α + e α + e
αT 0 1 1

αT
+ eT 1 0 2

αT
+ eT 1 2 0

⎤⎥⎦
for some column vector α, where eT = (1, 1, . . . , 1). Let Ri (Ci, respectively) be the ith row (column, respectively) of Dn.

In particular,

det

⎡⎣ Dn−3 α α + e
αT 0 1

αT
+ eT 1 0

⎤⎦
is the determinant of distance matrix of T − {n}, thus it is actually equal to det(Dn−1), and

det
[

Dn−3 α

αT 0

]
is the determinant of distance matrix of T − {n − 1, n}, which is det(Dn−2). From which, we can deduce that

−2 det

⎡⎣ Dn−3 α α + e
αT 0 1

αT
+ eT 1 0

⎤⎦ − 2 det

⎡⎣ Dn−3 α α + e
αT 0 1

αT
+ eT 1 2

⎤⎦
= −2 det

⎡⎣ Dn−3 α α + e
αT 0 1

αT
+ eT 1 0

⎤⎦ − 2 det

⎡⎣ Dn−3 α α + e
αT 0 1

αT
+ eT 1 0

⎤⎦ − 2 det

⎡⎣ Dn−3 α 0
αT 0 0

αT
+ eT 1 2

⎤⎦
= −4 det

⎡⎣ Dn−3 α α + e
αT 0 1

αT
+ eT 1 0

⎤⎦ − 4 det
[

Dn−3 α

αT 0

]
= −4 det(Dn−1) − 4 det(Dn−2). (1)

Applying elementary transformations Rn − Rn−1 to Dn, together with (1), we get

det(Dn) = det

⎡⎢⎣ Dn−3 α α + e α + e
αT 0 1 1

αT
+ eT 1 0 2
0T 0 2 −2

⎤⎥⎦
= −2 det

⎡⎣ Dn−3 α α + e
αT 0 1

αT
+ eT 1 0

⎤⎦ − 2 det

⎡⎣ Dn−3 α α + e
αT 0 1

αT
+ eT 1 2

⎤⎦
= −4 det(Dn−1) − 4 det(Dn−2).

Case 2. There exists a leaf in T whose neighbor node is of degree 2.
The deduction of this case is very similar to Case 1. We assume that the vertex n is a leaf of T whose unique neighbor

(the vertex n − 1) is of degree 2, and the vertex n − 2 is the other neighbor of the vertex n − 1 in T . This time, Dn is of
the form:

Dn =

⎡⎢⎢⎣
Dn−3 β β + e β + 2e
βT 0 1 2

βT
+ eT 1 0 1

βT
+ 2eT 2 1 0

⎤⎥⎥⎦
for some column vector β.
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Beginning with Dn, applying three elementary transformations successively: Rn − 2Rn−1, Rn +Rn−2, Cn + Cn−2, finally
it leads to

det(Dn) = det

⎡⎢⎢⎣
Dn−3 β β + e 2β + 2e
βT 0 1 2

βT
+ eT 1 0 2
0T 0 2 0

⎤⎥⎥⎦
= −2 det

⎡⎣ Dn−3 β 2β + 2e
βT 0 2

βT
+ eT 1 2

⎤⎦
= −2 det

⎡⎣ Dn−3 β β + e
βT 0 1

βT
+ eT 1 0

⎤⎦ − 2 det

⎡⎣ Dn−3 β β + e
βT 0 1

βT
+ eT 1 2

⎤⎦
= −4 det(Dn−1) − 4 det(Dn−2),

where the last equation follows from (1), just by replacing α by β.
In conclusion, we always have the three-term recurrence relation:

det(Dn) + 4 det(Dn−1) + 4 det(Dn−2) = 0.

Combining with the initial conditions det(D1) = 0 and det(D2) = −1, it is not hard to obtain its solution

det(Dn) = −(n − 1)(−2)n−2.
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