Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Another simple proof of Graham and Pollak's theorem Zhibin Du ^{a,b,*}, Jean Yeh ^c

^a School of Software, South China Normal University, Foshan, Guangdong 528225, China

^b School of Mathematics and Statistics, Zhaoqing University, Zhaoqing 526061, China

^c Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 82444, Taiwan

ARTICLE INFO

Article history: Received 3 December 2019 Received in revised form 7 May 2020 Accepted 8 May 2020 Available online 23 May 2020

Keywords: Determinant Distance matrix Trees

ABSTRACT

Let *T* be a tree with *n* vertices, and D_n be the distance matrix of *T*. Graham and Pollak (1971) discovered an elegant formula for the determinant of D_n : det $(D_n) = -(n-1)(-2)^{n-2}$. It is surprising that it depends only on the order of *T*, not on the specific structure of *T*. By virtue of the classical Dodgson's determinant-evaluation rule, Yan and Yeh (2006) presented a simple proof of the formula above. In this note, we give another simple proof, based on a homogeneous linear three-term recurrence relation: det $(D_n) + 4 \det(D_{n-1}) + 4 \det(D_{n-2}) = 0$.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Let *T* be a tree with *n* vertices whose vertices are denoted by 1, 2, ..., n. Let $D_n = (d_{ij})_{n \times n}$ be the distance matrix of *T*, where d_{ij} represents the distance from *i* to *j* in *T*.

A remarkable formula for the determinant of D_n was found by Graham and Pollak [7] in 1971:

 $\det(D_n) = -(n-1)(-2)^{n-2},$

which depends only on the order n of T, independent of the structure of T. More than thirty years later, Yan and Yeh [9] simplified the proof, by exploiting the classical Dodgson's determinant-evaluation rule. More related extensions can be found in [1–6,8,10,11].

It is worth mentioning that a nonhomogeneous linear two-term recurrence relation was deduced in [7,9]:

 $\det(D_n) = -2 \det(D_{n-1}) + (-1)^{n-1} 2^{n-2}.$

And the remarkable Dodgson's determinant-evaluation rule actually leads to a quadratic three-term recurrence relation [9]:

 $\det(D_n)\det(D_{n-2}) = (\det(D_{n-1}))^2 - 2^{2n-6}.$

In this note, based on a simpler homogeneous linear three-term recurrence relation:

 $\det(D_n) + 4 \det(D_{n-1}) + 4 \det(D_{n-2}) = 0,$

together with the initial conditions $det(D_1) = 0$ and $det(D_2) = -1$, we could give another simple proof for $det(D_n) = -(n-1)(-2)^{n-2}$.

https://doi.org/10.1016/j.disc.2020.111994 0012-365X/© 2020 Elsevier B.V. All rights reserved.

^{*} Corresponding author at: School of Software, South China Normal University, Foshan, Guangdong 528225, China. *E-mail addresses:* zhibindu@126.com (Z. Du), chunchenyeh@gmail.com (J. Yeh).

2. Proofs

There is an obvious observation: If $n \ge 3$, then there exists a leaf (vertex of degree 1) in *T* such that its neighbor node is of degree 2 or adjacent to another leaf. For example, assume that v is a terminal vertex of a diametrical path of *T*, then v is a leaf in *T*, whose neighbor node is of degree 2 or adjacent to another leaf.

Case 1. There exists a leaf in *T* whose neighbor node is adjacent to another leaf.

Assume that the vertices (n-1) and n are two leaves of T sharing the common neighbor (the vertex (n-2)). Accordingly, D_n is of the form:

$$D_n = \begin{bmatrix} D_{n-3} & \boldsymbol{\alpha} & \boldsymbol{\alpha} + \boldsymbol{e} & \boldsymbol{\alpha} + \boldsymbol{e} \\ \boldsymbol{\alpha}^T & 0 & 1 & 1 \\ \boldsymbol{\alpha}^T + \boldsymbol{e}^T & 1 & 0 & 2 \\ \boldsymbol{\alpha}^T + \boldsymbol{e}^T & 1 & 2 & 0 \end{bmatrix}$$

for some column vector $\boldsymbol{\alpha}$, where $\boldsymbol{e}^T = (1, 1, ..., 1)$. Let \mathcal{R}_i (\mathcal{C}_i , respectively) be the *i*th row (column, respectively) of D_n . In particular,

$$\det \begin{bmatrix} D_{n-3} & \boldsymbol{\alpha} & \boldsymbol{\alpha} + \boldsymbol{e} \\ \boldsymbol{\alpha}^T & 0 & 1 \\ \boldsymbol{\alpha}^T + \boldsymbol{e}^T & 1 & 0 \end{bmatrix}$$

is the determinant of distance matrix of $T - \{n\}$, thus it is actually equal to det (D_{n-1}) , and

$$\det \begin{bmatrix} D_{n-3} & \boldsymbol{\alpha} \\ \boldsymbol{\alpha}^T & \mathbf{0} \end{bmatrix}$$

is the determinant of distance matrix of $T - \{n - 1, n\}$, which is det (D_{n-2}) . From which, we can deduce that

$$-2 \det \begin{bmatrix} D_{n-3} & \alpha & \alpha + e \\ \alpha^T & 0 & 1 \\ \alpha^T + e^T & 1 & 0 \end{bmatrix} - 2 \det \begin{bmatrix} D_{n-3} & \alpha & \alpha + e \\ \alpha^T & 0 & 1 \\ \alpha^T + e^T & 1 & 2 \end{bmatrix}$$
$$= -2 \det \begin{bmatrix} D_{n-3} & \alpha & \alpha + e \\ \alpha^T & 0 & 1 \\ \alpha^T + e^T & 1 & 0 \end{bmatrix} - 2 \det \begin{bmatrix} D_{n-3} & \alpha & \alpha + e \\ \alpha^T & 0 & 1 \\ \alpha^T + e^T & 1 & 0 \end{bmatrix} - 2 \det \begin{bmatrix} D_{n-3} & \alpha & \alpha + e \\ \alpha^T & 0 & 1 \\ \alpha^T + e^T & 1 & 0 \end{bmatrix}$$
$$= -4 \det \begin{bmatrix} D_{n-3} & \alpha & \alpha + e \\ \alpha^T & 0 & 1 \\ \alpha^T + e^T & 1 & 0 \end{bmatrix} - 4 \det \begin{bmatrix} D_{n-3} & \alpha \\ \alpha^T & 0 \end{bmatrix}$$
$$= -4 \det (D_{n-1}) - 4 \det (D_{n-2}).$$

(1)

Applying elementary transformations $\mathcal{R}_n - \mathcal{R}_{n-1}$ to D_n , together with (1), we get

$$det(D_n) = det \begin{bmatrix} D_{n-3} & \alpha & \alpha + e & \alpha + e \\ \alpha^T & 0 & 1 & 1 \\ \alpha^T + e^T & 1 & 0 & 2 \\ \mathbf{0}^T & 0 & 2 & -2 \end{bmatrix}$$
$$= -2 det \begin{bmatrix} D_{n-3} & \alpha & \alpha + e \\ \alpha^T & 0 & 1 \\ \alpha^T + e^T & 1 & 0 \end{bmatrix} - 2 det \begin{bmatrix} D_{n-3} & \alpha & \alpha + e \\ \alpha^T & 0 & 1 \\ \alpha^T + e^T & 1 & 2 \end{bmatrix}$$
$$= -4 det(D_{n-1}) - 4 det(D_{n-2}).$$

Case 2. There exists a leaf in *T* whose neighbor node is of degree 2.

The deduction of this case is very similar to Case 1. We assume that the vertex n is a leaf of T whose unique neighbor (the vertex n - 1) is of degree 2, and the vertex n - 2 is the other neighbor of the vertex n - 1 in T. This time, D_n is of the form:

$$D_n = \begin{bmatrix} D_{n-3} & \beta & \beta + e & \beta + 2e \\ \beta^T & 0 & 1 & 2 \\ \beta^T + e^T & 1 & 0 & 1 \\ \beta^T + 2e^T & 2 & 1 & 0 \end{bmatrix}$$

for some column vector $\boldsymbol{\beta}$.

Beginning with D_n , applying three elementary transformations successively: $\mathcal{R}_n - 2\mathcal{R}_{n-1}$, $\mathcal{R}_n + \mathcal{R}_{n-2}$, $\mathcal{C}_n + \mathcal{C}_{n-2}$, finally it leads to

$$det(D_n) = det \begin{bmatrix} D_{n-3} & \beta & \beta + e & 2\beta + 2e \\ \beta^T & 0 & 1 & 2 \\ \beta^T + e^T & 1 & 0 & 2 \\ 0^T & 0 & 2 & 0 \end{bmatrix}$$
$$= -2 det \begin{bmatrix} D_{n-3} & \beta & 2\beta + 2e \\ \beta^T & 0 & 2 \\ \beta^T + e^T & 1 & 2 \end{bmatrix}$$
$$= -2 det \begin{bmatrix} D_{n-3} & \beta & \beta + e \\ \beta^T & 0 & 1 \\ \beta^T + e^T & 1 & 0 \end{bmatrix} - 2 det \begin{bmatrix} D_{n-3} & \beta & \beta + e \\ \beta^T & 0 & 1 \\ \beta^T + e^T & 1 & 2 \end{bmatrix}$$
$$= -4 det(D_{n-1}) - 4 det(D_{n-2}),$$

where the last equation follows from (1), just by replacing α by β .

In conclusion, we always have the three-term recurrence relation:

 $\det(D_n) + 4 \det(D_{n-1}) + 4 \det(D_{n-2}) = 0.$

Combining with the initial conditions $det(D_1) = 0$ and $det(D_2) = -1$, it is not hard to obtain its solution

$$\det(D_n) = -(n-1)(-2)^{n-2}.$$

CRediT authorship contribution statement

Zhibin Du: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Software, Writing - original draft . **Jean Yeh:** Data curation, Project administration, Resources, Supervision, Validation, Visualization, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

Zhibin Du was supported by the National Natural Science Foundation of China (Grant No. 11701505). Jean Yeh was supported by NSC, Taiwan 108-2115-M-017-005-MY2.

References

- [1] R.B. Bapat, S.J. Kirkland, M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 401 (2005) 193-209.
- [2] R.B. Bapat, A.K. Lal, S. Pati, A q-analogue of the distance matrix of a tree, Linear Algebra Appl. 416 (2006) 799-814.
- [3] R.B. Bapat, A.K. Lal, S. Pati, The distance matrix of a bidirected tree, Electron. J. Linear Algebra 18 (2009) 233–245.
- [4] M. Edelberg, M.R. Garey, R.L. Graham, On the distance matrix of a tree, Discrete Math. 14 (1976) 23-29.
- [5] R.L. Graham, A.J. Hoffman, H. Hosoya, On the distance matrix of a directed graph, J. Graph Theory 1 (1977) 85-88.
- [6] R.L. Graham, L. Lovász, Distance matrix polynomials of trees, Adv. Math. 29 (1978) 60-88.
- [7] R.L. Graham, H.O. Pollak, On the addressing problem for loop switching, Bell Syst. Tech. J. 50 (1971) 2495–2519.
- [8] H.-H. Li, L. Su, J. Zhang, On the determinant of q-distance matrix of a graph, Discuss. Math. Graph Theory 34 (2014) 103-111.
- [9] W. Yan, Y.-N. Yeh, A simple proof of Graham and Pollak's theorem, J. Combin. Theory Ser. A 113 (2006) 892-893.
- [10] W. Yan, Y.-N. Yeh, The determinants of *q*-distance matrices of trees and two quantities relating to permutations, Adv. Appl. Math. 39 (2007) 311-321.
- [11] H. Zhou, Q. Ding, The distance matrix of a tree with weights on its arcs, Linear Algebra Appl. 511 (2016) 365-377.